Data Handling in detail
R offers several functions to import data from various file formats into your working environment. This guide demonstrates how to import data into R using different file formats.
Importing Data in R
To illustrate, we will use a sample dataset in two formats: .csv and .txt. Let’s dive into the methods for importing data.
Reading a CSV (Comma-Separated Values) File
Method 1: Using read.csv()
The read.csv() function is a simple way to import CSV files. It includes the following parameters:
file.choose(): Opens a dialog box to select a CSV file.header: Indicates if the first row contains column names. UseTRUEif it does orFALSEotherwise.
Example:
# Import and store the dataset in data1
data1 <- read.csv(file.choose(), header = TRUE)
# Display the data
print(data1)
Output:
Name Age Department
1 John 25 IT
2 Alice 30 HR
3 Robert 28 Finance
Method 2: Using read.table()
The read.table() function requires you to specify the delimiter using the sep parameter. For CSV files, use sep=",".
Example:
# Import and store the dataset in data2
data2 <- read.table(file.choose(), header = TRUE, sep = ",")
# Display the data
print(data2)
Output:
Name Age Department
1 John 25 IT
2 Alice 30 HR
3 Robert 28 Finance
Reading a Tab-Delimited (.txt) File
Method 1: Using read.delim()
This function is specifically for tab-delimited files. It also has parameters like:
file.choose(): Opens a file selection dialog.header: Indicates whether the first row contains column names.
Example:
# Import and store the dataset in data3
data3 <- read.delim(file.choose(), header = TRUE)
# Display the data
print(data3)
Output:
Product Price Quantity
1 Apples 100 50
2 Bananas 50 120
3 Oranges 75 80
Method 2: Using read.table()
For tab-delimited files, use sep="\t" to specify the delimiter.
Example:
# Import and store the dataset in data4
data4 <- read.table(file.choose(), header = TRUE, sep = "\t")
# Display the data
print(data4)
Output:
Product Price Quantity
1 Apples 100 50
2 Bananas 50 120
3 Oranges 75 80
Using RStudio to Import Data
You can also import data interactively using RStudio. Follow these steps:
- In the Environment tab, click Import Dataset.
- Choose the file format (CSV, Excel, etc.).
- Browse your computer to select the file.
- The data will appear in the RStudio Viewer. Type the dataset name in the console to display it.
Reading JSON Files in R
To work with JSON files, install the rjson package. This package allows you to:
- Load JSON files.
- Convert JSON data into data frames for analysis.
Install the Package:
install.packages("rjson")
Example JSON File (saved as example.json):
{
"ID": ["101", "102", "103"],
"Name": ["Alice", "Bob", "Charlie"],
"Salary": ["5000", "6000", "5500"],
"Department": ["IT", "HR", "Finance"]
}
Code to Read JSON:
# Load the rjson library
library(rjson)
# Provide the path to the JSON file
result <- fromJSON(file = "C:\\example.json")
# Print the result
print(result)
Output:
$ID
[1] "101" "102" "103"
$Name
[1] "Alice" "Bob" "Charlie"
$Salary
[1] "5000" "6000" "5500"
$Department
[1] "IT" "HR" "Finance"
Converting JSON to a Data Frame:
# Convert JSON to a data frame
data <- as.data.frame(result)
print(data)
Output:
ID Name Salary Department
1 101 Alice 5000 IT
2 102 Bob 6000 HR
3 103 Charlie 5500 Finance
Leave a Reply